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COMPUTATIONAL METHODS FOR EXTREMAL STEKLOV
PROBLEMS∗

ELDAR AKHMETGALIYEV† , CHIU-YEN KAO‡ , AND BRAXTON OSTING§

Abstract. We develop a computational method for extremal Steklov eigenvalue problems and
apply it to study the problem of maximizing the pth Steklov eigenvalue as a function of the domain
with a volume constraint. In contrast to the optimal domains for several other extremal Dirichlet- and
Neumann-Laplacian eigenvalue problems, computational results suggest that the optimal domains
for this problem are very structured. We reach the conjecture that the domain maximizing the pth
Steklov eigenvalue is unique (up to dilations and rigid transformations), has p-fold symmetry, and
has at least one axis of symmetry. The pth Steklov eigenvalue has multiplicity 2 if p is even and
multiplicity 3 if p ≥ 3 is odd.
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1. Introduction. Dedicated to the memory of Russian mathematician Vladimir
Andreevich Steklov, a recent article in Notices of the American Mathematical Society
discuss his remarkable contributions to the development of science [31]. One of his
main contributions is on the study of the (second-order) Steklov eigenvalue problem,
which has an important application in describing the dynamics of liquid sloshing
[37, 27, 6, 32, 30]. Assume that a fluid in a container is inviscid, incompressible, and
irrotational and that the surface tension on the free surface is negligible. Denoting
the velocity potential by ψ(x, y, z), the governing equation for time-harmonic, small-
amplitude fluid sloshing is the mixed Steklov eigenvalue problem,

(1)

{
∆ψ = 0 in W, ∂nψ = νψ on F,
∂nψ = 0 on B, and

∫
F
ψds = 0.

Here, ∆ is the Laplace operator, ∂n denotes the normal derivative, W ⊂ R3 is the
domain of the liquid, F is the free surface of the liquid on the top, B is the wetted
rigid part of ∂W , and (ν, ψ) denotes the eigenpair. For sufficiently regular domains,
it is known that (1) has a discrete sequence of eigenvalues, 0 < ν1 ≤ ν2 ≤ ν3 ≤
· · · → ∞, and corresponding eigenfunctions ψn ∈ H1(W ), n = 1, 2, 3, . . . . The
dominant sloshing behavior corresponds to the smallest eigenfrequency and the high
spot (maximal elevation of the free surface) of the corresponding eigenfunction [31].
One of the key questions of interest for the sloshing problem is how to design the
container to minimize liquid sloshing, e.g., the sloshing of fuel in a rocket [37].
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In this paper, we consider the unmixed Steklov eigenvalue problem,

(2)

{
∆u = 0 in Ω,

∂nu = λu on ∂Ω,

where Ω ⊂ Rd is a bounded open set with Lipschitz boundary ∂Ω, and (λ, u) denotes
the eigenpair. We view (2) as a simplified model of (1), but it also arises in the
study of heat flow and electromagnetics problems. The Steklov spectrum satisfying
(2) is also of fundamental interest as it coincides with the spectrum of the Dirichlet-

to-Neumann operator Γ: H
1
2 (∂Ω) → H−

1
2 (∂Ω), given by the formula Γu = ∂n(Hu),

where Hu denotes the unique harmonic extension of u ∈ H 1
2 (∂Ω) to Ω.

The Steklov spectrum is discrete, and we enumerate the eigenvalues in increasing
order, 0 = λ0(Ω) ≤ λ1(Ω) ≤ λ2(Ω) ≤ · · · → ∞. Weyl’s law for Steklov eigenvalues, the

asymptotic rate at which they tend to infinity, is given by λj ∼ 2π
(

j
|Bd−1| |∂Ω|

) 1
d−1 ,

where Bd−1 is the unit ball in Rd−1 [22]. The eigenvalues also have a variational
characterization,

(3) λk(Ω) = min
v∈H1(Ω)

{∫
Ω
|∇v|2 dx∫
∂Ω
v2ds

:

∫
∂Ω

vujds = 0, j = 0, . . . , k − 1

}
,

where uj is the corresponding jth eigenfunction. It follows from (3) that Steklov
eigenvalues satisfy the homothety property λj(tΩ) = t−1λj(Ω). We describe a number
of previous results for extremal Steklov problems in section 2.

Statement of results. In this short paper, we develop fast and robust compu-
tational methods for extremal Steklov eigenvalue problems. We apply these methods
to the shape optimization problem

(4) Λp? = max
Ω⊂R2

Λp(Ω), where Λp(Ω) = λp(Ω) ·
√
|Ω|.

Note that Λp is invariant to dilations, so (4) is equivalent to maximizing λp(Ω) subject
to |Ω| = 1.

Recently, a general existence result has been established for extremal Steklov
eigenvalue problems [8, Theorem 6.4]. In the context of (4), the results are summa-
rized in the following theorem.

Theorem 1.1 (see [8]). The problem max{Λp(Ω): Ω ⊂ R2 open,H1(∂Ω) < +∞}
has at least one solution which is bounded and given by the union of at most p disjoint
Jordan domains whose closures intersect pairwise in at most one point. Moreover, ev-
ery optimal set is bounded and contained in an optimal domain satisfying the previous
properties.

This theorem establishes the existence and some regularity results for the optimal
domain. In this paper, we further restrict ourselves to the study of (4) for star-shaped
domains. In particular, the assumption that the domains are simply connected is
potentially restrictive. In [17] the Steklov eigenvalues on an annulus domain have
been computed, and in [22] it was shown that the first Steklov eigenvalue is larger
on an annulus domain than on a disk with a fixed perimeter. However, it is still an
open question whether one can find a domain with larger Steklov eigenvalues on a
non-simply-connected domain with a fixed area.

Our computational studies of (4) for values of p between 1 and 101 suggest that
the optimal domains are very structured and support the following conjecture.
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Conjecture 1.2. The maximizer, Ωp?, of Λp(Ω) in (4) is unique (up to dila-
tions and rigid transformations), has p-fold symmetry, and has at least one axis of
symmetry. The pth Steklov eigenvalue has multiplicity 2 if p is even, and multiplicity
3 if p ≥ 3 is odd.

Furthermore, as described in section 4, the associated eigenspaces are also very
structured. This structure stands in stark contrast to previous computational studies
for extremal eigenvalue problems involving the Dirichlet- and Neumann-Laplacian
spectra. In particular, denoting the Dirichlet- and Neumann-Laplacian eigenvalues
of Ω ⊂ R2 by λD(Ω) and λN (Ω), respectively, computational results suggest that
the optimizers for the following shape optimization problems do not seem to have
structure:

minΩ⊂R2 λDp (Ω) · |Ω| [36, 5]

minΩ⊂R2

(
λDp (Ω) + λDp+1(Ω)

)
· |Ω| [3]

minΩ⊂R2

∑k+`
p=k cp · λDp (Ω) · |Ω| with cp ≥ 0 and

∑k+`
p=k cp = 1 [34, 35]

maxΩ⊂R2
λD
p (Ω)

λD
1 (Ω)

[33, 3]

minΩ⊂R2 λDp (Ω) + |∂Ω| [9, 4]

maxΩ⊂R2 λNp (Ω) · |Ω| [5]

The only exception that we are aware of is when the optimal value is attained by a
ball or a sequence of domains which degenerates into the disjoint union of balls.

For the problems listed above, we also note that the largest value of p for which
these previous studies have been able to access is p ≈ 20. Here, we compute the
optimal domains for p = 100 and p = 101; our ability to compute optimal domains for
such large values of p arises from (i) a very efficient and accurate Steklov eigenvalue
solver, and (ii) a slight reformulation of the eigenvalue optimization problem that
significantly reduces the number of eigenvalue evaluations required.

Outline. In section 2, we review some related work. Computational methods
are described in section 3. Numerical experiments are presented in section 4, and we
conclude in section 5 with a brief discussion.

2. Related work. Here we briefly survey some related work; a more compre-
hensive review can be found in [22] and a historical viewpoint with applications can
be found in [31]. Steklov eigenvalues are also discussed in [24], where (4) is given as
Open Problem 25.

In 1954, R. Weinstock proved that the disk maximizes the first nontrivial Steklov
eigenvalue of

(5)

{
∆u = 0 in Ω,

∂nu = λρu on ∂Ω,

among simply connected planar domains with a fixed total mass M(Ω) =
∫
∂Ω
ρ(s)ds,

where ρ is an L∞(∂Ω) nonnegative weight function on the boundary, referred to as
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the “density” [38, 21]. It remains an open question for non-simply-connected bounded
planar domains [22]. In 1974, J. Hersch, L. E. Payne, and M. M. Schiffer proved a
general isoperimetric inequality for simply connected planar domains which, in a
special case, can be expressed as

(6) sup{λp(Ω) ·M(Ω): Ω ⊂ R2} ≤ 2πp, p ∈ N.

In [21], Girouard and Polterovich provided an alternative proof based on complex
analysis to show that a disk maximizes the first nontrivial Steklov eigenvalue. Fur-
thermore, they proved that the maximum of the second eigenvalue is not attained in
the class of simply connected domains, but instead by a sequence of simply connected
domains degenerating into a disjoint union of two identical disks. In [20], Girouard
and Polterovich proved that the bound in (6) is sharp and attained by a sequence of
simply connected domains degenerating into a disjoint union of p identical balls.

An extension of R. Weinstock’s result to arbitrary Riemannian surfaces Σ with
genus γ and k boundary components was given by Fraser and Schoen in [18]. The
inequality

(7) λ1(Σ) · |∂Σ| ≤ 2(γ + k)π

derived therein reduces to Weinstock’s result for γ = 0 and k = 1, and the bound is
sharp. However, for γ = 0 and k = 2, the bound is not sharp. See [18] for a better
upper bound on annulus surfaces. In [14], it is proven that there exists a constant
C = C(d), such that for every bounded domain Ω ⊂ Rd,

(8) λp(Ω) · |∂Ω|
1

d−1 ≤ Cp 2
d , p ≥ 1.

A generalization for Riemannian manifolds is also given.
Other objective functions depending on Steklov eigenvalues were also considered.

In [25], Hersch, Payne, and Schiffer proved that the minimum of
∑n
p=1 λ

−1
p (Ω) is

attained when Ω is a disk for both perimeter and area constraints. This result is
generalized to arbitrary dimensions in [12]. In [17], it is proven that sums of squared
reciprocal Steklov eigenvalues,

∑∞
p=1 λ

−2
p (Ω), for simply connected domains with a

fixed perimeter are minimized by a disk. Sharp isoperimetric upper bounds have been
found for the sum of the first p eigenvalues, partial sums of the spectral zeta function,
and the heat trace for starlike and simply connected domains using quasi-conformal
mappings to a disk [19].

There are also a few computational studies of extremal Steklov problems. The
most relevant is recent work of Bogosel [7], which is primarily concerned with the
development of methods based on fundamental solutions to compute the Steklov,
Wentzell, and Laplace–Beltrami eigenvalues. This method was used to demonstrate
that the ball is the minimizer for a variety of shape optimization problems. The author
also studies the problem of maximizing the first five Wentzell eigenvalues subject to
a volume constraint, for which (4) is a special case. Shape optimization problems for
Steklov eigenvalues with mixed boundary conditions have also been studied [10].

3. Computational methods.

3.1. Computation of Steklov eigenvalues. We consider the Steklov eigen-
value problem (2) where the domain Ω is simply connected with smooth boundary ∂Ω.
Without loss of generality we assume that ∂Ω possesses a 2π-periodic counterclockwise
parametric representation of the form

x(t) = (x1(t), x2(t)), 0 ≤ t ≤ 2π.
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Use of integral equation methods for (2) leads directly upon discretization to a matrix
eigenvalue problem [26, 13]. In order to avoid the inclusion of hypersingular operators
we use eigenfunction representations based on a single-layer potential. The eigenfunc-
tion u(x) is represented using a single-layer potential, ϕ, with a slight modification to
ensure uniqueness of the solution:

(9) u(x) =
S0[ϕ]

2
=

∫
∂Ω

Φ(x− y)(ϕ(y)− ϕ)ds(y) + ϕ,

where Φ(x) = 1
2π log |x| and ϕ = 1

|∂Ω|
∫
∂Ω
ϕ(y)ds(y). The boundary operator S0 :

C0,α(∂Ω) → C1,α(∂Ω) is bijective; see [29, Theorem 7.41]. Taking into account well-
known expressions (see, e.g., [29]) for the jump of the single-layer potential and its
normal derivative across ∂Ω, the eigenvalue problem (2) reduces to the integral eigen-
value equation for (λ, ϕ),

(10) A[ϕ] = λB[ϕ].

Here, the boundary operators A and B are defined as

A[ϕ](x) :=

∫
∂Ω

∂Φ(x− y)

∂n(x)
(ϕ(y)− ϕ)ds(y) +

1

2
(ϕ(x)− ϕ),

B[ϕ](x) := λ

(∫
∂Ω

Φ(x− y)(ϕ(y)− ϕ)ds(y) + ϕ

)
.

In the cases considered in this paper, the Steklov eigenfunctions uk and the corre-
sponding densities ϕk are smooth functions. These problems can thus be treated
using highly effective spectrally accurate methods [15, 29] based on explicit resolution
of logarithmic singularities and a Fourier series approximation of the density. To con-
struct a spectral method for approximation of the integral operators in (10), we use
an explicit 2π-parametrization of the boundary ∂Ω. The periodic parametric domain
is discretized using an n-point uniform grid. The density ϕ and smooth integrands in
the approximated integral operators (10) are represented in a Fourier basis and inte-
grated with spectral accuracy. For the logarithmic integration, Nyström quadratures
are used, which also yields spectral accuracy; see [29]. This spectrally accurate ap-
proximation of the integral equation system results in a generalized matrix eigenvalue
problem of the form

(11) AX = ΛBX,

which can be solved numerically by means of the QZ-algorithm (see [23]). More details
about this method can be found in [1, 2].

In Figure 1, we demonstrate the spectral convergence of this boundary integral
method. In the left panel we depict a domain that was obtained as an optimizer for
the 50th Steklov eigenvalue. In polar coordinates, this domain is given by {(r, θ) : r <
R(θ)}, where

R(θ) = 2.5 + 0.057475351612645 · cos(50 θ) + 0.002675998736772 · cos(100 θ)

− 0.002569287572637 · cos(150 θ).

In the right panel, we display a log-log convergence plot of the first 100 Steklov
eigenvalues of the domain shown in the left panel, as we increase the number n of
interpolation points. For ground-truth, we used n = 1800.
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Fig. 1. A log-log convergence plot of the first 100 eigenvalues for the domain on the left as the
number of interpolation points increases.

3.2. Eigenvalue perturbation formula. The following proposition gives the
Steklov eigenvalue perturbation formula, which can also be found in [16].

Proposition 3.1. Consider the perturbation x 7→ x + τv and write c = v · n̂,
where n̂ is the outward unit normal vector. Then a simple (unit-normalized) Steklov
eigenpair (λ, u) satisfies the perturbation formula

(12) λ′ =

∫
∂Ω

(
|∇u|2 − 2λ2u2 − λκu2

)
c ds.

Proof. Let primes denote the shape derivative. From the identity λ =
∫

Ω
|∇u|2 dx,

we compute

λ′ = 2

∫
Ω

∇u · ∇u′ dx+

∫
∂Ω

|∇u|2c ds (shape derivative)

= −2

∫
Ω

(∆u)u′ dx+ 2

∫
∂Ω

unu
′ ds+

∫
∂Ω

|∇u|2c ds (Green’s identity)

= 2λ

∫
∂Ω

uu′ ds+

∫
∂Ω

|∇u|2c ds (equation (2)).

Differentiating the normalization equation,
∫
∂Ω
u2 ds = 1, we have that∫

∂Ω

uu′ ds = −
∫
∂Ω

(
uun +

κ

2
u2
)
c ds = −

∫
∂Ω

(
λ+

κ

2

)
u2 c ds.

Putting these two equations together, we obtain (12).

3.3. Shape parameterization. We consider domains of the form

(13) Ω = {(r, θ) : 0 ≤ r < ρ(θ)}, where ρ(θ) =

m∑
k=0

ak cos(kθ) +

m∑
k=1

bk sin(kθ).

The velocities corresponding to a perturbation of the kth cosine and sine coefficients
are given by

∂x(θ)

∂ak
· n̂(θ) =

ρ(θ) cos(kθ)√
ρ2(θ) + [ρ′(θ)]2

and
∂x(θ)

∂bk
· n̂(θ) =

ρ(θ) sin(kθ)√
ρ2(θ) + [ρ′(θ)]2

.

The derivative of Steklov eigenvalues with respect to Fourier coefficients can be ob-
tained using Proposition 3.1.
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3.4. Optimization method. We apply gradient-based optimization methods
to minimize spectral functions of Steklov eigenvalues, such as (4). The gradient of
a simple eigenvalue is provided in Proposition 3.1. While Steklov eigenvalues are
not differentiable when they have multiplicity greater than one, in practice, eigenval-
ues computed numerically that approximate the Steklov eigenvalues of a domain are
generically simple. Thus, we are faced with the problem of maximizing a function
that we know to be nonsmooth, but whose gradient is well-defined at generic points
we sample.

To compute solutions to the eigenvalue optimization problem (4), we (trivially)
reformulate the problem as a minimax problem,

max
Ω⊂R2

min
j : p≤j≤p−1+m

Λj(Ω), m ≥ 1.

This minimax problem can be numerically solved by first reformulating as

max
Ω⊂R2

t

s.t. Λj(Ω) ≥ t, j = p, p+ 1, . . . , p− 1 +m,

and using a sequential quadratic programming (SQP) method [11], as implemented
in the MATLAB function fminimax. We use as convergence criteria a tolerance on
either the relative change on stepsize or function value. We choose m to exceed the
(expected) multiplicity of the eigenvalue at the optimal solution. For (4), we find this
method to be more effective than using the BFGS quasi-Newton method directly, as
reported in other computational studies of extremal eigenvalues [33, 5, 34, 35, 28].

4. Numerical results. In this section, we apply the computational methods
developed in section 3 to the Steklov eigenvalue optimization problem (4). The meth-
ods are implemented in MATLAB, and numerical results are obtained on a 4-core
4GHz Intel Core i7 computer with 32GB of RAM. Unless specified otherwise, we
initialize with randomly chosen Fourier coefficients, and the number of interpolation
points used is 6 · p ·m, where p is the eigenvalue considered and m is the largest free
Fourier coefficient for the domain.

Initial results. Optimal domains, Ωp?, for Λp? for p = 2, . . . , 10 are plotted
in Figure 2. We also define Λp?j := Λj(Ω

p?) and tabulate Λp?j for j = 1, . . . , 12. In

Figures 3 and 4, we plot the eigenfunctions corresponding to Λp?j for j = p−1, p, p+1
if p is even, and j = p, p+ 1, p+ 2 if p ≥ 3 is odd. The eigenfunctions are extended
outside of Ωp? using the representation (9). The optimal domains and their eigenpairs
are very structured. Namely, for these values of p, we make the following (numerical)
observations:

1. The optimal domains, Ωp?, are unique (up to dilations and rigid transforma-
tions).

2. Ωp? looks like a “ruffled pie dish” with p “ruffles” where the curvature of the
boundary is positive. In particular, Ωp? has p-fold rotational symmetry and
an axis of symmetry.

3. The pth eigenvalue has multiplicity 2 for p even and multiplicity 3 for p ≥ 3
odd, i.e.,

p even: Λp?p = Λp?p+1 < Λp?p+2,

p odd: Λp?p = Λp?p+1 = Λp?p+2 < Λp?p+3.



EXTREMAL STEKLOV PROBLEMS 1233

j/p 1 2 3 4 5
1 1.77245385087 0.77711553416 1.08009419126 1.17184143852 1.23983446877
2 1.77245385087 2.91607062996 1.08009419126 1.17184143852 1.23983446877
3 3.54489505800 2.91607062996 4.14530094752 1.61218026073 1.94641573795
4 3.54492034560 3.27779066969 4.14530094753 5.28443697870 1.94641573795
5 5.31736077095 4.49874762429 4.14530094753 5.28443697870 6.49648330968
6 5.31736233451 5.04108010599 4.91549057961 5.44835286940 6.49648330968
7 7.08981538184 6.11836168338 6.02473863720 5.44835286940 6.49648330968
8 7.08981542529 6.27292391406 6.02473863720 6.49307907483 6.73220322361
9 8.86226925401 7.69339202998 7.62864589136 7.33722449947 6.73220322361

10 8.86226925490 7.81074114281 7.62864589136 7.33722449947 8.13365983464
11 10.63472310534 9.26310835729 8.95411656010 8.63569850900 8.80703776153
12 10.63472310535 9.30894713716 9.13942771171 9.03967498150 8.80703776153

j/p 6 7 8 9 10
1 1.26679073258 1.29332099645 1.30507111512 1.31877096745 1.32527400403
2 1.26679073258 1.29332099645 1.30507111512 1.31877096745 1.32527400403
3 2.12087896619 2.25492147182 2.33230070074 2.40062714807 2.44325807518
4 2.12087896619 2.25492147182 2.33230070074 2.40062714807 2.44325807518
5 2.43137356740 2.78418204027 3.00802851250 3.18864047723 3.30989719981
6 7.64509491772 2.78418204027 3.00802851250 3.18864047723 3.30989719981
7 7.64509491772 8.84784433682 3.24728287256 3.61129280434 3.86836939850
8 7.77206522336 8.84784433682 10.00272938023 3.61129280434 3.86836939850
9 7.77206522336 8.84784433682 10.00272938023 11.20007255719 4.06278154050

10 7.97924507207 9.05209069188 10.10344300189 11.20007255719 12.35895460691
11 7.97924507207 9.05209069188 10.10344300189 11.20007255719 12.35895460692
12 9.73604655977 9.22612069487 10.32907157080 11.37140333632 12.44176614187

Fig. 2. (Top) Ωp? for p = 2, . . . , 10. The optimal domain for p = 1 is a ball. (Bottom) Values
Λj(Ωp?) for p = 1, . . . , 10 and j = 1, . . . , 12. See section 4.

4. There is a very large gap between Λp?p−1 and Λp?p . For even p, Λp?p−1 is simple.
5. For even p, the eigenfunction corresponding to Λp−1 (left) and two eigenfunc-

tions from the eigenspace corresponding to Λp = Λp+1 (center and right) are
plotted in Figure 3. The eigenfunctions are all nearly zero at the center of the
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Fig. 3. For Ωp? with even p = 2, 4, 6, 8, 10, Steklov eigenfunctions p − 1, p, and p + 1. Here,
Λp−1 < Λp = Λp+1 < Λp+2.

domain and oscillatory on the boundary. The eigenfunction corresponding to
Λp−1 takes alternating maxima and minima on the “ruffles” of the domain.
Eigenfunctions from the Λp = Λp+1 eigenspace may be chosen so that one
eigenfunction is nearly zero on the “ruffles” of the domain and takes alternat-
ing maxima and minima in between. The other eigenfunction takes maxima
on the “ruffles” of the domain and minima in between.
For odd p ≥ 3, in Figure 4 we plot the eigenfunctions from the three-
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Fig. 4. For Ωp? with odd p = 3, 5, 7, 9, Steklov eigenfunctions p, p + 1, and p + 2. Here,
Λp−1 < Λp = Λp+1 = Λp+2 < Λp+3.

dimensional eigenspace corresponding to Λp = Λp+1 = Λp+2. Again, eigen-
functions from this subspace are nearly zero on the interior of the domain and
oscillatory on the boundary. They may be chosen so that, again, one eigen-
function takes maxima on the “ruffles” of the domain and minima in between
(right figures). The other two eigenfunctions are nearly zero on the “ruffles”
of the domain and take alternating maxima and minima in between on the
boundary. These two eigenfunctions are concentrated on opposite sides of the
domain.

Some of these observations are also summarized in Conjecture 1.2. For p =
2, 3, 4, 5, the domain symmetries have also been observed in the recent numerical
results of Bogosel [7]. Preliminary results indicate that the introduction of a hole in
the domain decreases the pth eigenvalue. To consider larger values of p, we use the
structure of the optimal domains for relatively small p to reduce the search space and
generate good initial domains for the optimization procedure.
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Fig. 5. (Left) For p = 6, 10, 14, . . . , 38, a plot of the coefficients ap?k·p for k = 1, 2, 3 and the

interpolation in (14). (Center) Value of Λp for a ball (black), interpolated domains Ωp◦ (blue),
and optimal domains Ωp? (red). The values for Ωp◦ and Ωp? are indistinguishable. (Right) The
perimeter of Ωp◦ as a function of p.

Structured coefficients. If a domain has p-fold symmetry, the only nonzero
coefficients in the Fourier expansion (13) are multiples of p. If there is an axis of
symmetry, then we can further assume bk = 0 for k ≥ 1. Therefore, since we ob-
serve that the optimal domains have p-fold symmetry and an axis of symmetry, when
minimizing the pth eigenvalue, we only vary the coefficients ak·p for k = 1, 2, . . . ,K.
This simplification reduces the shape optimization problem to an optimization prob-
lem with just K parameters. For values p ≤ 10 we can use, say, K = 10 coefficients
(corresponding to multiples of p) and obtain the same optimal values as obtained by
including nonmultiple coefficients. For larger values of p, using this many coefficients
is computationally infeasible. For values p ≤ 10, we also used K = 3 coefficients to
compute optimal domains. Of course, in this case, the optimal values are slightly
smaller but the optimal domains are very similar and, in particular, the all observed
properties (described above) of the eigenvalues/functions still hold. To explore op-
timal domains for very large values of p, we therefore use only K = 3 coefficients
(corresponding to multiples of p).

Let {ap?j }j denote the coefficients corresponding to Ωp?. Solving (4) for p ≤ 40,

we observe that, as a function of p, the coefficients {ap?k·p}k=1,2,3 decay at a rate

ap?k·p ∝
1
p . Using computed values for the optimal coefficients, we obtain the following

interpolations, denoted {ap◦j }j :

(14)

ap◦0·p = 2.5, ap◦1·p =
1

0.1815 + 0.3444 · p
, ap◦2·p =

1

−6.1198 + 7.6443 · p
,

ap◦3·p =
1

−4.5563− 7.6561 · p
.

A plot of these three interpolations is given in Figure 5 (left). Let Ωp◦ denote the
domain corresponding to these coefficients, {ap◦j }j . In Figure 5 (center), we plot
Λp(Ω

p◦) in blue, Λp(Ω
p?) in red, and the value of Λp for a ball in black. The values

for Ωp◦ and Ωp? are indistinguishable, although the multiplicity of the pth eigenvalue
for these two domains differs. We observe that the value of Λp(Ω

p◦) grows linearly
with p. Linear interpolation of Λp(Ω

p◦) gives

(15) Λp(Ω
p◦) ≈ 0.5801 + 1.1765 · p.

Linear interpolation of the eigenvalues of a ball gives

Λp(B) ≈ 0.4436 + 0.8862 · p.
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j/p 50 51 100 101
p− 2 20.30936391721 20.75355064378 40.69488836617 41.11849978908
p− 1 20.34992971509 20.75355064378 40.71526210762 41.11849978908

p 59.41361758262 60.59374478101 118.23330554334 119.41159188027
p + 1 59.41361758262 60.59374478101 118.23330554339 119.41159188027
p + 2 59.43099705171 60.59374478101 118.24200985153 119.41159188027
p + 3 59.43099705171 60.62775851108 118.24200985153 119.42881860937
p + 4 59.48272776444 60.62775851108 118.26807069001 119.42881860937

Fig. 6. (Top) Ωp? for p = 50, 51, 100, 101. (Bottom) Values Λj(Ωp?) for j = p− 2, . . . , p + 4.

The interpolation for a ball is in good agreement with Weyl’s law, λj(Ω)|∂Ω| ∼ jπ,

since for a ball we have |∂Ω| = 2
√
π|Ω| 12 and

Λp(B2) = λp(B2)
√
|B2| = 1

2
√
π
λp(B2)|∂B2| ∼

√
π

2
· p.

One can view (15) in terms of the bound given in (8). In dimension two, using the
isoperimetric inequality, 4π|Ω| ≤ |∂Ω|2, we have that

Λp(Ω) = λp(Ω) · |Ω| 12 ≤ 1

2
√
π
λp(Ω) · |∂Ω| ≤ C̃p.

We have constructed a sequence of domains with maximal value Λp(Ω) and so have

computed the (optimal) value of C̃ in this inequality. For the interpolated domains,
Ωp◦, we plot p vs. the perimeter, |∂Ωp◦|/

√
|Ωp◦|, in Figure 5 (right). We observe that

the perimeter appears to converge to a value near 4.53, which is greater than the value
for the disc, 2

√
π ≈ 3.54.
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Fig. 7. p− 1, p, and p + 1 Steklov eigenfunctions of Ωp? for p = 50 (top) and p = 100 (bottom).

Fig. 8. p, p + 1, and p + 2 Steklov eigenfunctions of Ωp? for p = 51 (top) and p = 101 (bottom).

Solution of (4) for large p. We extrapolate the interpolation given in (14) to
p = 50, 51, 100, 101. Using this as an initial condition for the optimization problem (4),
where we restrict the admissible set to domains with coefficients ak·p for k = 1, 2, 3, we
solve the optimization problem to obtain domains, Ωp?, plotted in Figure 6. Here, we
also tabulate Λp?j for j = p−2, . . . , p+4. In Figures 7 and 8, we plot the eigenfunctions

corresponding to Λp?j for j = p− 1, p, p+ 1 if p is even, and j = p, p+ 1, p+ 2 if p
is odd. The observations made above for small values of p hold here as well.

5. Discussion. In this paper, we developed a computational method for ex-
tremal Steklov eigenvalue problems and applied it to study the problem of maximizing
the pth Steklov eigenvalue as a function of the domain with a volume constraint. The
optimal domains, spectrum, and eigenfunctions are very structured, in contrast with
other extremal eigenvalue problems. There are several interesting directions for this
work. The first is to use conformal or quasi-conformal maps to better understand the
optimal domains (see [19]). It would be very interesting to extend these computational
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results to higher dimensions and see if the optimal domains there are also structured.
The computational methods developed here could also be used to investigate other
functions of the Steklov spectrum. Finally, the optimal domains in this work could
potentially find application in sloshing problems, where it is desirable to engineer a
vessel to have a large spectral gap to avoid certain exciting frequencies [37].

Acknowledgments. We would like to thank Dorin Bucur for pointing us to-
wards [16], and Oscar Bruno and Nilima Nigam for collaboration in building the
eigenvalue solver.
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